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Introduction 
Machine Vision Enabled In Process Quality Improvements

• Machine Vision (MV) has been widely used in smart 
manufacturing systems to monitor product quality and 
machine conditions 


• Many R&D efforts have been done to improve the MV 
capabilities in terms of anomaly detection, defect 
detection, etc.


• Few efforts to integrate data from MV with other 
production data for quality and productivity improvements


• It is desirable to use MV as an essential tool to enable the 
“In-Process Quality Improvements (IPQI)” to achieve in-
site process monitoring, root cause diagnosis, predictive 
control, and product defect prevention
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Machine Vision Enabled IPQI:

Key Enabling Methodologies 

(examples)

• Effective algorithms in anomaly detection or 

feature extraction using machine vision data


• Modeling of heterogeneous data (images, 

video signals, 3D point cloud data, functional 

curve data, text data, etc.) to represent 

relationships between production process 

variables and product quality variables


• Modeling, prediction, and control of 3D 

profile propagation based on machine vision 

signals in Multistage Manufacturing Process 

(MMP) 

3D Printing / Multilayer 
Additive Manufacturing
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Outline
• Introduction


– Machine Vision Enabled In-Process Quality Improvements


• R&D Examples for Machine Vision Enabled IPQI

① Unsupervised Anomaly Detection with Machine Vision

② Multiple Tensor-on-Tensor Regression Model for MMP

③ Machine Vision-Based Automatic Control

④ In-situ Product Quality Prediction based on 3D Point Cloud Data

⑤ DETONATE: Nonlinear Dynamic Evolution modeling of Time-

dependent 3-dimensional point cloud profiles 


• Summary
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• Yan, H., Paynabar, K., Shi, J., 2017, “Anomaly Detection in Images with Smooth Background Via Smooth-
Sparse Decomposition”, Technometrics, Vol. 59, No. 1, pp102-114. https://doi.org/
10.1080/00401706.2015.1102764

• Yan, H., Paynabar, K., Shi, J., 2017, “Online High-dimensional Monitoring and Diagnostics via Recursive 
Spatio-Temporal Smooth Sparse Decomposition”, Technometrics, Vol. 60, No.2, pp181-197. https://doi.org/
10.1080/00401706.2015.1102764

Sequential High-Dimensional Data Analysis  
for Anomaly Detection and System Monitoring
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Common Characteristics and Challenges  
of High Dimensional (HD) Streaming Data

• High-dimensionality


• High velocity


• Complex spatio-temporal structure


• Unknown anomaly occurrence, location, 
and shape


• Goal: Unsupervised feature extraction 
from HD data	 

– Labeling/quality measurement is expensive.

– Process data is typically cheap.
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7• Yan, H., Paynabar, K., Shi, J., 2018, “Online High-dimensional Monitoring and Diagnostics via Recursive 
Spatio-Temporal Smooth Sparse Decomposition”, Technometrics, Vol. 60, No.2, pp181-197.

Anomaly Detection for High-dimensional Data 

Profile            = 
Sequence

Spatio-temporal     
+     Mean 

Anomaly          + Noise

Smooth Sparse Small

𝑦 = 𝜇 + 𝑎 + 𝑒

argmin𝜃,𝜃𝑎
     𝜆𝜃′￼𝑅𝜃  +   𝛾 𝜃𝑎 1

+     | |𝑒 | |2 ,  𝑠 . 𝑡 .   𝑦 = (𝐵𝑠 ⊗ 𝐵𝑡)𝜃 + (𝐵𝑎𝑠 ⊗ 𝐵𝑎𝑡)𝜃𝑎 + 𝑒

𝑦 = (𝐵𝑠 ⊗ 𝐵𝑡)𝜃 + (𝐵𝑎𝑠 ⊗ 𝐵𝑎𝑡)𝜃𝑎 + 𝑒
𝐵𝑠

𝐵𝑡

Spatial

Temporal

𝜃

𝐵𝑎𝑠

𝐵𝑎𝑡

Spatial

Temporal

𝜃𝑎
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Original Profile   Mean Estimator   

Control ChartDetected Anomalies

Simulation Results:  
Anomaly Detection for Dynamic HD Streaming Data 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Case Study: Rolling Process Monitoring 
• Data Size: , with 100 samples

• Background: smooth in  direction 


–
–  B-spline base with 5 knots

• Goal: Detect scattered surface anomaly: 

128 × 512
𝑦

𝐵𝑥 = 𝐼𝑥,
𝐵𝑦:

𝐵𝑎𝑥 = 𝐼𝑎𝑥, 𝐵𝑎𝑦 = 𝐼𝑎𝑦

Original Profile Mean Estimator

Control ChartDetected Anomalies
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Adaptive sampling for anomaly detection
Point-based Inspection System

Low sampling 
frequency

Low battery

 or bandwidth

Volcano detection

Low transmission and 
processing capability

Solar flare detection

• Time-consuming for dense sampling

• Sparse anomaly: most points/sensors are irrelevant and only a subset is important. 

• Objective: Adaptive sampling strategy to quickly locate and examine anomalies
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Anomaly Detection Result (250 Points)

Space Filling 

(Exploration)

Focus Sampling

 (Exploitation)
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Real Case Study—Guided Wave Test

Proposed AKM2D Full Sampling

12

# of points 300 27000
Measurement time 2mins 2 hours

# of points

Measurement time

• Capable of detecting the anomaly with 1% of full sampled data

• Reduce measurement time from 2 hours to 2minutes for 1m2 sample



Additive Tensor Decomposition (ATD) 

Robust learning for tensor data

Mou, S., Wang, A., Zhang, C., & Shi, J. (2021). Additive Tensor Decomposition Considering 
Structural Data Information. IEEE Transactions on Automation Science and Engineering, 19(4), 
2904-2917.
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Motivating: Unsupervised pixel-wise calcification region extraction 
in CT image

Calcification region sparse inside each slice but continuous across nearby slices
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Additive Tensor Decomposition (ATD) 

Robust tensor signal restoration by incorporating tensor structural priors 

Generalize the robust learning methods to tensor data. 

Tensor structural priors Data: CT images of aortic root region 


 minimize
𝒳1,𝒳2,𝒳3

𝜆1,1( 𝐃1𝒳1(2)
2

𝐹
+ 𝐃1𝒳1(3)

2

𝐹)
+𝜆2,1 𝐃1𝒳2(1)

2

𝐹
+ 𝜆2,2 vec(𝒳2)

1
+ 𝜆3,1 𝒳3

2

2

:

CT 

images

ℳ :

Back-

ground 

𝒳𝟏 :

Cal-

region

𝒳𝟐 : 
Error 
𝒳𝟑= + +

Background Smooth

Calcium continuous

across slices

Calcium sparse

inside each slice

Error small
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Results Calcification Region Extraction

Non-obvious

Calcification!

Obvious

Calcification!

Continuity ATD result SSD result

ATD outperforms SSD for non-obvious calcification regions

Both ATD and SSD extracts obvious calcification regions 

Integration of tensor structural information improves 
the performance for tensor signal restoration.

Mou, S., Wang, A., Zhang, C., & Shi, J. (2021). Additive Tensor Decomposition Considering Structural 
Data Information. IEEE Transactions on Automation Science and Engineering, 19(4), 2904-2917.
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Multiple Tensor-on-Tensor Regression Model for 
Multistage Manufacturing Processes (MMP)

• Reisi Gahrooei, M., Yan, H., Paynabar, K., Shi, J., 2020, “Multiple Tensor on Tensor Regression: An approach 
for modeling processes with heterogeneous sources of data”, Technometrics, 63(2), 147-159.

• Miao, H., Wang, A., Chang, Z, and Shi, J. (2021), “Structural Tensor-on-Tensor Regression with Interaction 
Effects and Its Application to A Hot Rolling Process”,   Journal of Quality Technology, Vol. 54, Issue 5, 
p. 547-56
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Multiple Tensor-on-Tensor Regression 
To estimate an HD output given a set of HD inputs  

Sample 1
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Reisi Gahrooei, M., Yan, H., Paynabar, K., Shi, J., 2020, “Multiple Tensor on Tensor Regression: An 
approach for modeling processes with heterogeneous sources of data”, Technometrics, 63(2), 147-159.

Model: 

Objective: 
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Tensor-on-Tensor regression with Interaction effects Models with Application to a Hot Rolling Process

 OLSI PLSI CP_TOTI Tucker_MTOTI STOTI

MSPE 0.0976

(0.0397)

4.18e-04

(5.14e-05)

7.10e-04

(6.28e-05)

7.50e-04

(1.15e-04)

2.87e-04

(3.28e-05)

Miao, H., Wang, A., Chang, Z, and Shi, J. (2021), “Structural Tensor-on-Tensor Regression with Interaction 
Effects and Its Application to A Hot Rolling Process”,   Journal of Quality Technology, Vol. 54, Issue 5, 
p. 547-56

Challenges: 

Curse of dimensionality


 is a five-order tensor.

Complex structures

It is difficult to capture the structure of a 
high dimensional tensor.

ℬ[1,2] ∈ ℝ𝐾1×𝑀1×𝐾2×𝑀2×𝐷

Interaction effects

Model:
𝒴 = 𝒳1 ∗ ℬ1 + 𝒳2 ∗ ℬ2 + (𝒳1 ∘ 𝒳2) ∗ ℬ[1,2] + ℰ 

3D scatter plot among 
speed of stand 8, 
effective diameter of 
stand 2 and quality 𝑦6

3D scatter plot among 
rod area of stand 3, temp 
of stand 5 and quality 


 
𝑦6

With interaction
No interaction

MV
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Image-Based Feedback Control Using Tensor Analysis

Zhong, Z., Paynabar, K., Shi, J., (2023). “Image Based Feedback Control using Tensor 
Analysis.” Technometrics, DOI: 10.1080/00401706.2022.2157880
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Motivation for Image-based Control

Stage position , 
lens height ,…

𝐿𝑖
h𝑖

Stage position , 
lens height ,…

𝐿𝑗
h𝑗

A set of control variables    

Minimize overlay output

⇒

Lithography Machine Machining process

Cutting Depth , 
Speed  

D𝑖
𝑣𝑖

Cutting Depth , 
Speed  

D𝑗
𝑣𝑗

A set of control variables    

Minimize the deviations from nominal

⇒

• The product quality measures are sequential images or videos.

• Adjustment of process control variables will impact product quality.
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Objective and Challenges

Objective:

Develop an optimal control framework for streaming image outputs by 
adjusting the input variables. 
Challenges


❶ High-dimensionality: How to avoid overfitting?

❷ Spatial and temporal correlation structure: How to exploit?

❸ Non-i.i.d Noise: How to model?


Methodology:


Tensor-based time series modeling and control

❶  ❷  ❸  
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Overview of Image-based Control

Input Output

Historical 
manufacturing 

process
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variables

Process model

Control strategy

Online manufacturing 
process
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Optimal control 
variables

Input Output

Inputs Outputs

Controller

Novel Tensor time series 
modeling Technique.

Image-based feedback 
control:


❑ Derive the optimal control law;

𝒴𝑡 = Σ𝑝
𝑗=1𝒴𝑡−𝑗 ∗ 𝒜𝑗 + Σ𝑙

𝑛=1𝒳𝑡−𝑛 ∗ ℬ𝑛 + 𝛿𝐸𝑡 .

Current and previous 

image output

Control variables Non-i.i.d Noise

High dimensional coefficients

 How to learn 

1)   and ?

2) The correlation structure of ? 

𝒜 ℬ
𝛿ℰ

Process model:

Min𝒳𝑡
𝐸(𝒴̂𝑡+1|𝑡(𝒳𝑡) − 𝑇)

2

Control Objective function: 

closed-form solution for control law   𝑣𝑒𝑐(𝒳𝑡)
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Case Study: The photolithography process
Overlay vector: The alignment error between (i) 
The projected pattern. (ii) The desired projected 
location on the wafer. 

24



 
In-situ Product Quality Prediction based on  

3D Point Cloud Data 

Biehler, M., Yan, H., &Shi, J. (2022) “ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for 
Unstructured, Varying-Size Point Cloud Data,” in IEEE Transactions on Automation Science and Engineering, 
doi: 10.1109/TASE.2022.3230563.
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Motivating Example – Medical Engineering

Noise, Vibration, Harshness 
(NVH)

Manufacturing Deviations

Manufacturuin
g

Inline 
Metrology MV Data Warehouse Assembl

y

Intermediate dimension quality 
check

Final quality 
check

Ca. 380.000 parts / 
year

26
Objective: Model a scalar response as a function of an unstructured, varying-size 3D point cloud

Current Practice

In situ MV-based Quality Prediction



ANTLER Methodology – An Overview

Streaming Nonlinear 
Bayesian Tensor 
Decomposition

ℬ 𝒰 𝑌𝐗
 1.

Unstructured, varying-
size 3D point cloud

Voxel Representation Nonlinear 
Regression

VAE with ANTLER loss
Vector 

Response

Binary 
Tensor

𝒟
Balanced 

Sampling


Tensor

 2.  3.  4.

Balanced Sampling 
Strategy

 5.  5.

27
Biehler, M., Yan, H., &Shi, J. (2022) “ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for Unstructured, Varying-Size 
Point Cloud Data,” in IEEE Transactions on Automation Science and Engineering, doi: 10.1109/TASE.2022.3230563.

𝑑𝑖 = 𝑓(𝐮𝑖) 𝑌 = 𝑔𝜃𝑟(𝒰)


ℒ𝜙, 𝜃, 𝜃𝑟(𝒟, 𝑌) = ∑
𝒟𝑖∈𝒟

log
1
𝑆

𝑆

∑
𝑗=1

𝑝𝜃( 𝒟𝑖 𝐳( j))
𝑞𝜙(𝐳( j)  𝒟𝑖)

+  𝜆1𝐷𝐾𝐿(𝑞𝜙(𝒛  𝒟𝑖) 𝑝(𝒛))
+𝜆2 μ𝒛 − μ𝒰𝑆𝑁𝐵𝑇𝐷

2

2
+𝜆3 𝑔𝜃𝑟(μ𝒛) − 𝑌

2

2• Utilize high expressivity of VAE and fast inference time 

• Leverage performance of SNBTD on small sample sizes

• Simultaneously optimize regression and low dimensional representation
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ANTLER – Industry Implementation and Impact

Transmission Error

Manufacturuing Inline 
Metrology

ANTLE
R Warehouse Assembly

• Introduced intermediate quality check based on ANTLER 
prediction results:

– Decision rule:


• Accept if predicted transmission error < Engineering Tolerance

Reject 
Decision

Based on ANTLER prediction

Intermediate quality check

And rejection decision

Final quality 
check

• Since implementation (February 2022):
• Reduction of total scrap cost by 61%

Ca. 380.000 
parts / year

28
Biehler, M., Yan, H., &Shi, J. (2022) “ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for 
Unstructured, Varying-Size Point Cloud Data,” in IEEE Transactions on Automation Science and Engineering, 
doi: 10.1109/TASE.2022.3230563.
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DETONATE: Nonlinear Dynamic Evolution 
modeling of Time-dependent 3-dimensional 

point cloud profiles 

Biehler,M., Lin, D. & Shi, J. (2023) DETONATE: Nonlinear Dynamic Evolution Modeling of Time-dependent 3-
dimensional Point Cloud Profiles, IISE Transactions, (accepted, in 
press) DOI: 10.1080/24725854.2023.2207615
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Motivation: dynamically evolving 3D shapes are common 

Landslide 3D Printing Detonation

X Unstructured  Measurement Points

t=1t=2t=3

Weather

t=1t=2t=3

Process 
Sensors

t=1

Wind & Chemical 
Reaction

t=2t=3

 
DETONATE: Nonlinear Dynamic Evolution modeling of Time-

dependent 3-dimensional point cloud profiles    

30Objective: Modeling of dynamically evolving 3D shapes according to temporal 
propagation and heterogenous inputs



Challenges 
1.  Evolving 3D shapes exhibit complex spatio-temporal structure: How to model?
2.  Forward and backward predictions: How to exploit and combine?
3.  Unstructured data structure of 3D point clouds: How to process?
4.  Heterogenous input data: How to fuse with temporal model?

• Dynamically, nonlinear, temporally evolving 3D shape profiles

Common Data Characteristics: 

•   3D shape profiles are spatially affected by heterogeneous input data 

•  3D shapes are represented by unstructured 3D point clouds

•   Backward predictions are also relevant: Root Cause Analysis 
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• Problem setup using Koopman Operator Theory

• Latent Encoding via 3D Autoencoder

• Forward and Backward Dynamics

• Consistent Dynamics

• Heterogenous Input Data Sources 

• Unified DETONATE framework

Proposed DETONATE Methodology 
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𝑆

𝜓𝑑 𝜓𝑒
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h,𝑘

…

…𝒳𝑡
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Heterogenous Input Data

     Tabular       Functional Curve           Image

Unstructured 3D Shape

Data type-specific   
feature extractor

𝑥𝑡
h,2 𝑥𝑡

h,𝑘

𝒳𝑡
𝑆

Unstructured 3D Shape

𝑡 𝑡 + 1

M. Biehler, D. Lin, and J. Shi (2023) “DETONATE: Nonlinear Dynamic Evolution Modeling of Time-dependent 3-
dimensional Point Cloud Profiles”, IISE Transactions (accepted),  http://dx.doi.org/10.13140/
RG.2.2.28631.34720/1 
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• Goal: 𝒳𝑡+1
𝑆 = 𝑓(𝒳𝑡

𝑆, 𝒳𝑡
h,𝑗)

Unified DETONATE Framework

• Unified DETONATE Loss:

ℒ𝐷𝐸𝑇𝑂𝑁𝐴𝑇𝐸 =                                                                                                 

𝜓𝑒 𝜓𝑑
ℱ
ℬ

𝒳𝑡
𝑆 𝒳𝑡+1

𝑆𝜓𝑑 𝜓𝑒

𝑥𝑡
h,1

𝒳𝑡
h,1 𝒳𝑡

h,𝑘

…

…𝒳𝑡
h,2

Heterogenous Input Data 

                             Tabular      Functional Curve            Image

Unstructured 3D Shape Unstructured 3D Shape

Data type-
specific   
feature 

extractor

𝑥𝑡
h,2 𝑥𝑡

h,𝑘

𝑡 𝑡 + 1

ℒ𝑟𝑒𝑐 +𝜆1 ∙ ℒ𝑓𝑤𝑑 +𝜆2 ∙ ℒ𝑏𝑤𝑑 +𝜆3 ∙ ℒ𝑐𝑜𝑛 +𝜆4 ∙ ℒh
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• 3D printing of PLA specimen via Fused 
Filament Fabrication (FFF)

Case Study – 3D Printing Experiments

• Prusa MK3S FDM printer
• Infrared Camera FLIR T360
• Laser Scanner FARO 

Quantum ScanArm
• Microcomputer to log nozzle 

and print bed temperature
• Noise detector 34



• Temporally evolving 3D point cloud profiles:

– Up- or down-sampled to a fixed-point number of 

– If more precision is required: Our ANTLER work on varying-size, unstructured point 

clouds can be adapted

𝑁𝑝 = 60,000

Case Study – 3D Printing - Results

• Prediction Results

M. Biehler, D. Lin, and J. Shi (2023) “DETONATE: Nonlinear Dynamic Evolution Modeling of Time-dependent 3-dimensional Point 
Cloud Profiles”, IISE Transactions (accepted),  http://dx.doi.org/10.13140/RG.2.2.28631.34720/1 35
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DETONATE Model-based Dimensional Compensation Control 
- Concepts

• DETONATE enables next generation of In-Process Quality 
Improvement (IPQI) methodologies


• Compensation and Control: Concept

– Adjust process variables to achieve desired 3D shape

Multistage 
Manufacturing Process Desired Shape

Predicted shape (DETONATE):

Distorted due to process variation

Dimensional 
Compensation Control

Adjust 
control 

variables
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Target
Control using 
DETONATE

Real 3D 
Printing 
System

𝑢
Control actions

𝒴̂𝑡

𝒴𝑇𝑎𝑟𝑔𝑒𝑡
𝑡

Closed loop Control

min 𝒴𝑇𝑎𝑟𝑔𝑒𝑡
𝑡 − 𝒴̂𝑡

DETONATE Model-based Dimensional Compensation Control 
- Concepts and Experimental Results

Without control

With DETONATE control
37



Summary
• Machine Vision has been widely used in smart manufacturing 

to measure product quality and process/machine conditions, 
which enables the IPQI.


• Machine Learning and Data fusion are key components of 
R&D, which requires multidisciplinary efforts from 
engineering, statistics, machine learning, and control.


• Machine Vision enabled IPQI has been generated significant 
economic impacts in numerous manufacturing systems, and 
much more work needs to be done in this important area.


• Close collaborations between industry and academia are 
essential to move forward of machine vision enabled IPQI.
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Thank you!
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