

Machine Vision Enabled In-Process Quality Improvement in Smart Manufacturing

Jianjun Shi The Carolyn J. Stewart Chair and Professor Georgia Institute of Technology

contact: jianjun.shi@isye.gatech.edu https://sites.gatech.edu/jianjun-shi/

Introduction Machine Vision Enabled In Process Quality Improvements

- Machine Vision (MV) has been widely used in smart manufacturing systems to monitor product quality and machine conditions
- Many R&D efforts have been done to improve the MV capabilities in terms of anomaly detection, defect detection, etc.
- Few efforts to integrate data from MV with other production data for quality and productivity improvements
- It is desirable to use MV as an essential tool to enable the "In-Process Quality Improvements (IPQI)" to achieve insite process monitoring, root cause diagnosis, predictive control, and product defect prevention

Machine Vision Enabled IPQI: Key Enabling Methodologies (examples) 3D Printing

- Effective algorithms in anomaly detection or feature extraction using machine vision data
- Modeling of heterogeneous data (images, video signals, 3D point cloud data, functional curve data, text data, etc.) to represent relationships between production process variables and product quality variables
- Modeling, prediction, and control of 3D profile propagation based on machine vision signals in Multistage Manufacturing Process (MMP)

3D Printing / Multilayer Additive Manufacturing

Outline

Introduction

- Machine Vision Enabled In-Process Quality Improvements
- R&D Examples for Machine Vision Enabled IPQI
 - **①** Unsupervised Anomaly Detection with Machine Vision
 - **②** Multiple Tensor-on-Tensor Regression Model for MMP
 - **③** Machine Vision-Based Automatic Control
 - **④** In-situ Product Quality Prediction based on 3D Point Cloud Data
 - 5 DETONATE: Nonlinear <u>Dynamic Evolution modeling of Time-</u> dependent 3-dimensional point cloud profiles
- Summary

Sequential High-Dimensional Data Analysis for Anomaly Detection and System Monitoring

Yan, H., Paynabar, K., Shi, J., 2017, <u>"Anomaly Detection in Images with Smooth Background Via Smooth-Sparse Decomposition"</u>, *Technometrics*, Vol. 59, No. 1, pp102-114. <u>https://doi.org/10.1080/00401706.2015.1102764</u>

٠

Yan, H., Paynabar, K., Shi, J., 2017, <u>"Online High-dimensional Monitoring and Diagnostics via Recursive</u> <u>Spatio-Temporal Smooth Sparse Decomposition</u>, *Technometrics,* Vol. 60, No.2, pp181-197. <u>https://doi.ofg/10.1080/00401706.2015.1102764</u> **Common Characteristics and Challenges of High Dimensional (HD) Streaming Data**

- High-dimensionality
- High velocity
- Complex spatio-temporal structure
- Unknown anomaly occurrence, location, and shape
- Goal: Unsupervised feature extraction from HD data
 - Labeling/quality measurement is expensive.
 - Process data is typically cheap.

Anomaly Detection for High-dimensional Data

 $\operatorname{argmin}_{\theta,\theta_a} \quad \lambda \theta' R \theta + \gamma \left| \theta_a \right|_1 + \left| |e| \right|^2, \ s \cdot t \cdot y = (B_s \otimes B_t) \theta + (B_{as} \otimes B_{at}) \theta_a + e$

Yan, H., Paynabar, K., Shi, J., 2018, <u>"Online High-dimensional Monitoring and Diagnostics via Recursive</u> <u>Spatio-Temporal Smooth Sparse Decomposition</u>", *Technometrics,* Vol. 60, No.2, pp181-197.

Simulation Results: Anomaly Detection for Dynamic HD Streaming Data

Case Study: Rolling Process Monitoring

- **Data Size:** 128×512 , with 100 samples
- **Background: smooth in** *y* **direction** ٠
 - $B_{\chi} = I_{\chi},$
 - B_{v} : B-spline base with 5 knots
- **Goal: Detect scattered surface anomaly:** $B_{ax} = I_{ax}, B_{av} = I_{av}$

Mean Estimator

400

80

100

Adaptive sampling for anomaly detection

Point-based Inspection System

Low sampling frequency

Volcano detection

Low battery or bandwidth

Solar flare detection

Low transmission and processing capability

- Time-consuming for dense sampling
- Sparse anomaly: most points/sensors are irrelevant and only a subset is important.
- Objective: Adaptive sampling strategy to quickly locate and examine anomalies

Anomaly Detection Result (250 Points)

Focus Sampling (Exploitation)

Proposed AKM²D ø, -Benchmark 1: Random ٥

Proposed AKM²D criterion

Real Case Study—Guided Wave Test

Additive Tensor Decomposition (ATD) Robust learning for tensor data

Mou, S., Wang, A., Zhang, C., & Shi, J. (2021). <u>Additive Tensor Decomposition Considering</u> <u>Structural Data Information</u>. *IEEE Transactions on Automation Science and Engineering*, 19(4), 2904-2917. Motivating: Unsupervised pixel-wise calcification region extraction in CT image

Calcification region sparse inside each slice but continuous across nearby slices

Additive Tensor Decomposition (ATD)

Robust tensor signal restoration by incorporating tensor structural priors

Generalize the robust learning methods to tensor data.

Results Calcification Region Extraction

Integration of tensor structural information improves the performance for tensor signal restoration.

Mou, S., Wang, A., Zhang, C., & Shi, J. (2021). <u>Additive Tensor Decomposition Considering Structural</u> <u>Data Information</u>. *IEEE Transactions on Automation Science and Engineering*, 19(4), 2904-2917.

Multiple Tensor-on-Tensor Regression Model for Multistage Manufacturing Processes (MMP)

- Reisi Gahrooei, M., Yan, H., Paynabar, K., Shi, J., 2020, "<u>Multiple Tensor on Tensor Regression: An approach</u> for modeling processes with heterogeneous sources of data", *Technometrics*, *63*(2), 147-159.
- Miao, H., Wang, A., Chang, Z, and Shi, J. (2021), "<u>Structural Tensor-on-Tensor Regression with Interaction Tensor Regression with Interaction Tensor Regression with Interaction Tensor Regression with Interaction Tensor Regression with Interaction Effects and Its Application to A Hot Rolling Process", Journal of Quality Technology, Vol. 54, Issue 5, p. 547-56
 </u>

Reisi Gahrooei, M., Yan, H., Paynabar, K., Shi, J., 2020, "<u>Multiple Tensor on Tensor Regression: An</u> approach for modeling processes with heterogeneous sources of data", *Technometrics*, *63*(2), 147-159.

Tensor-on-Tensor regression with Interaction effects Models with Application to a Hot Rolling Process

Model: $\mathscr{Y} = \mathscr{X}_1 * \mathscr{B}_1 + \mathscr{X}_2 * \mathscr{B}_2 + (\mathscr{X}_1 \circ \mathscr{X}_2) * \mathscr{B}_{[1,2]} + \mathscr{E}$ Interaction effects Challenges: Curse of dimensionality $\mathscr{B}_{[1,2]} \in \mathbb{R}^{K_1 \times M_1 \times K_2 \times M_2 \times D}$ is a five-order tensor. Complex structures It is difficult to capture the structure of a high dimensional tensor.

3D scatter plot among rod area of stand 3, temp of stand 5 and quality y_6

OLSI PLSI CP_TOTI Tucker_MTOTI STOTI MSPE 0.0976 (0.0397) 4.18e-04 (5.14e-05) 7.10e-04 (6.28e-05) 7.50e-04 (1.15e-04) 2.87e-04 (3.28e-05)						
MSPE0.0976 (0.0397)4.18e-04 (5.14e-05)7.10e-04 (6.28e-05)7.50e-04 (1.15e-04)2.87e-04 (3.28e-05)		OLSI	PLSI	CP_TOTI	Tucker_MTOTI	STOTI
	MSPE	0.0976 (0.0397)	4.18e-04 (5.14e-05)	7.10e-04 (6.28e-05)	7.50e-04 (1.15e-04)	2.87e-04 (3.28e-05)

Miao, H., Wang, A., Chang, Z, and Shi, J. (2021), "<u>Structural Tensor-on-Tensor Regression with Interaction</u> Effects and Its Application to A Hot Rolling Process". *Journal of Quality Technology*, Vol. 54, Issue 5.

Image-Based Feedback Control Using Tensor Analysis

Zhong, Z., Paynabar, K., Shi, J., (2023). "Image Based Feedback Control using Tensor Analysis." *Technometrics*, DOI: <u>10.1080/00401706.2022.2157880</u>

Motivation for Image-based Control

- The product quality measures are sequential images or videos.
- Adjustment of process control variables will impact product quality.

Objective and Challenges

Objective:

Develop an optimal control framework for streaming image outputs by adjusting the input variables.

Challenges

High-dimensionality: How to avoid overfitting?

2 Spatial and temporal correlation structure: How to exploit?

8 Non-i.i.d Noise: How to model?

Methodology:

Tensor-based time series modeling and control

Overview of Image-based Control

Case Study: The photolithography process

In-situ Product Quality Prediction based on 3D Point Cloud Data

Biehler, M., Yan, H., &Shi, J. (2022) "<u>ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for</u> <u>Unstructured, Varying-Size Point Cloud Data</u>," in *IEEE Transactions on Automation Science and Enginee* **25***g*, doi: 10.1109/TASE.2022.3230563.

Motivating Example – Medical Engineering

Objective: Model a scalar response as a function of an unstructured, varying-size 3D point cloud

ANTLER Methodology – An Overview

Biehler, M., Yan, H., &Shi, J. (2022) "ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for Unstructured, Varying-Size Point Cloud Data," in IEEE Transactions on Automation Science and Engineering, doi: 10.1109/TASE.2022.3230563.

ANTLER – Industry Implementation and Impact

- Introduced intermediate quality check based on ANTLER prediction results:
 - Decision rule:
 - Accept if predicted transmission error < Engineering Tolerance
- Since implementation (February 2022):
 - Reduction of total scrap cost by 61%

Biehler, M., Yan, H., &Shi, J. (2022) "<u>ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for</u> <u>Unstructured, Varying-Size Point Cloud Data</u>," in *IEEE Transactions on Automation Science and Engineering*, doi: 10.1109/TASE.2022.3230563.

DETONATE: Nonlinear Dynamic Evolution modeling of Time-dependent 3-dimensional point cloud profiles

Biehler, M., Lin, D. & Shi, J. (2023) <u>DETONATE: Nonlinear Dynamic Evolution Modeling of Time-dependent 3-</u> <u>dimensional Point Cloud Profiles</u>, *IISE Transactions*, (accepted, in press) DOI: <u>10.1080/24725854.2023.2207615</u> DETONATE: Nonlinear Dynamic Evolution modeling of Timedependent 3-dimensional point cloud profiles

Motivation: dynamically evolving 3D shapes are common

X Unstructured Measurement Points

Objective: Modeling of dynamically evolving 3D shapes according to temporal propagation and heterogenous inputs

Common Data Characteristics:

- Dynamically, nonlinear, temporally evolving 3D shape profiles
- 3D shapes are represented by unstructured 3D point clouds
- 3D shape profiles are spatially affected by heterogeneous input data
- Backward predictions are also relevant: Root Cause Analysis

Challenges

- 1. Evolving 3D shapes exhibit complex spatio-temporal structure: How to model?
- 2. Forward and backward predictions: How to exploit and combine?
- 3. Unstructured data structure of 3D point clouds: How to process?
- 4. Heterogenous input data: How to fuse with temporal model?

Proposed DETONATE Methodology

- Problem setup using Koopman Operator Theory
- Latent Encoding via 3D Autoencoder
- Forward and Backward Dynamics
- Consistent Dynamics
- Heterogenous Input Data Sources
- Unified DETONATE framework

<u>M. Biehler, D. Lin, and J. Shi (2023) "DETONATE: Nonlinear Dynamic Evolution Modeling of Time-dependent 3dimensional Point Cloud Profiles", IISE Transactions (accepted), http://dx.doi.org/10.13140/</u>

Unified DETONATE Framework

- **Goal:** $\mathscr{X}_{S}^{t+1} = f(\mathscr{X}_{S}^{t}, \mathscr{X}_{h,j}^{t})$
- Unified DETONATE Loss:

Utilize a unified Optimization Framework to combine all components to improve predictive performance

Case Study – 3D Printing Experiments

• 3D printing of PLA specimen via Fused Filament Fabrication (FFF)

- Prusa MK3S FDM printer
- Infrared Camera FLIR T360
- Laser Scanner FARO Quantum ScanArm
- Microcomputer to log nozzle and print bed temperature
- Noise detector

Case Study – 3D Printing - Results

- Temporally evolving 3D point cloud profiles:
 - Up- or down-sampled to a fixed-point number of $N_p = 60,000$
 - If more precision is required: Our ANTLER work on varying-size, unstructured point clouds can be adapted

Prediction Results

M. Biehler, D. Lin, and J. Shi (2023) "DETONATE: Nonlinear Dynamic Evolution Modeling of Time-dependent 3-dimensional Point Cloud Profiles", IISE Transactions (accepted), http://dx.doi.org/10.13140/RG.2.2.28631.34720/1

- DETONATE enables next generation of In-Process Quality Improvement (IPQI) methodologies
- Compensation and Control: Concept
 - Adjust process variables to achieve desired 3D shape

Predicted shape (DETONATE): Distorted due to process variation

DETONATE Model-based Dimensional Compensation Control - Concepts and Experimental Results

Summary

- Machine Vision has been widely used in smart manufacturing to measure product quality and process/machine conditions, which enables the IPQI.
- Machine Learning and Data fusion are key components of R&D, which requires multidisciplinary efforts from engineering, statistics, machine learning, and control.
- Machine Vision enabled IPQI has been generated significant economic impacts in numerous manufacturing systems, and much more work needs to be done in this important area.
- Close collaborations between industry and academia are essential to move forward of machine vision enabled IPQI.

