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Introduction
Machine Vision Enabled In Process Quality Improvements

Machine Vision (MV) has been widely used in smart
manufacturing systems to monitor product quality and
machine conditions

Many R&D efforts have been done to improve the MV
capabilities in terms of anomaly detection, defect
detection, etc.

Few efforts to integrate data from MV with other
production data for quality and productivity improvements

It is desirable to use MV as an essential tool to enable the
“In-Process Quality Improvements (IPQI)” to achieve in-
site process monitoring, root cause diagnosis, predictive
control, and product defect prevention



Machine Vision Enabled IPQI:
Key Enabling Methodologies

(exampleS) 3D Printing / Multilayer

Additive Manufacturing
Effective algorithms in anomaly detection or =

feature extraction using machine vision data Iélafrtgg@:— - ,
Modeling of heterogeneous data (images, s LA ey A
e [llament &4 Noise
E N "Micro- | s Detector
=\ ~ computer J | oy :

\

video signals, 3D point cloud data, functional

curve data, text data, etc.) to represent
relationships between production process
variables and product quality variables

Modeling, prediction, and control of 3D

profile propagation based on machine vision === S— fayers
signals in Multistage Manufacturing Process ’ layerd
(P) T

layerl

3



Outline

e Introduction
— Machine Vision Enabled In-Process Quality Improvements

e R&D Examples for Machine Vision Enabled IPQI

Unsupervised Anomaly Detection with Machine Vision

Multiple Tensor-on-Tensor Regression Model for MMP

Machine Vision-Based Automatic Control

In-situ Product Quality Prediction based on 3D Point Cloud Data

DETONATE: Nonlinear Dynamic Evolution modeling of Time-
dependent 3-dimensional point cloud profiles

OO

e Summary



Sequential High-Dimensional Data Analysis
for Anomaly Detection and System Monitoring

Yan, H., Paynabar, K., Shi, J., 2017, “Anomaly Detection in Images with Smooth Background Via Smooth-
Sparse Decomposition”, Technometrics, Vol. 59, No. 1, pp102-114._https://doi.org/
10.1080/00401706.2015.1102764

Yan, H., Paynabar, K., Shi, J., 2017, “Online High-dimensional Monitoring and Diagnostics via Recursive

Spatio-Temporal Smooth Sparse Decomposition”, Technometrics, Vol. 60, No.2, pp181-197. https://doi.cdBg/
10.1080/00401706.2015.1102764
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Common Characteristics and Challenges
of High Dimensional (HD) Streaming Data

High-dimensionality

High velocity

Complex spatio-temporal structure

Unknown anomaly occurrence, location,
and shape

Goal: Unsupervised feature extraction
from HD data
— Labeling/quality measurement is expensive.
— Process data is typically cheap.
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Anomalyv Detection for Hiah-dimensional Data

Profile = Spatio-temporal Anomaly + Noise
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* Yan, H., Paynabar, K., Shi, J., 2018, “Online High-dimensional Monitoring and Diagnostics via Recursive
Spatio-Temporal Smooth Sparse Decomposition”, Technometrics, Vol. 60, No.2, pp181-197.
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Simulation Results:
Anomaly Detection for Dynamic HD Streaming Data
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Case Study: Rolling Process Monitoring

Data Size: 128 x 512, with 100 samples
Background: smooth in y direction

- Bx = Ix’

— B,: B-spline base with 5 knots

Goal: Detect scattered surface anomaly: B, = I
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Adaptive sampling for anomaly detection

Point-based Inspection System Volcano detection Solar flare detection

Low transmission and
or bandwidth processing capability

Low sampling
frequency

e Time-consuming for dense sampling
e Sparse anomaly: most points/sensors are irrelevant and only a subset is important.

* Objective: Adaptive sampling strategy to quickly locate and examine anomalies



Anomaly Detection Result (250 Points)
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Real Case Study—Guided Wave Test

Proposed AKM2D Full Sampling
L] L
®
# of points # of points 27000
Measurement time 2mins Measurement time 2 hours
« Capable of detecting the anomaly with 1% of full sampled data 12

 Reduce measurement time from 2 hours to 2minutes for 1m2 sample



Additive Tensor Decomposition (ATD)

Robust learning for tensor data

Mou, S., Wang, A., Zhang, C., & Shi, J. (2021). Additive Tensor Decomposition Considering
Structural Data Information. IEEE Transactions on Automation Science and Engineering, 19(4),
2904-2917.
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Motivating: Unsupervised pixel-wise calcification region extraction
in CT image

Aortic Root

CT scan of the aortic root

Image tensor

Continuous
Calcification

[ Calcification region sparse inside each slice but continuous across nearby slices J
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Additive Tensor Decomposition (ATD)

Robust tensor signal restoration by incorporating tensor structural priors

Tensor structural priors Data: CT images of aortic root region
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[ Generalize the robust learning methods to tensor data. }

15



Results Calcification Region Extraction
Continuity ATD result SSD result

| ATD outperforms SSD for non-obvious calcification regions \

Integration of tensor structural information improves
the performance for tensor signal restoration.

16
Mou, S., Wang, A., Zhang, C., & Shi, J. (2021). Additive Tensor Decomposition Considering Structural

Data Information. IEEE Transactions on Automation Science and Engineering, 19(4), 2904-2917.
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Multiple Tensor-on-Tensor Regression Model for
Multistage Manufacturing Processes (MMP)

Reisi Gahrooei, M., Yan, H., Paynabar, K., Shi, J., 2020, “Multiple Tensor on Tensor Regression: An approach
for modeling processes with heterogeneous sources of data”, Technometrics, 63(2), 147-159.

Miao, H., Wang, A., Chang, Z, and Shi, J. (2021), “Structural Tensor-on-Tensor Regression with Interac§@n
Effects and Its Application to A Hot Rolling Process”, Journal of Quality Technology, Vol. 54, Issue 5,

n 547-56
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Multiple Tensor-on-Tensor Regression
To estimate an HD output given a set of HD inputs
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Reisi Gahrooei, M., Yan, H., Paynabar, K., Shi, J., 2020, “Multiple Tensor on Tensor Regression: An 18

approach for modeling processes with heterogeneous sources of data”, Technometrics, 63(2), 147-159.



https://sites.gatech.edu/jianjun-shi/files/2021/01/Multiple-Tensor-on-Tensor-Regression-An-Approach-for-Modeling-Processes-With-Heterogeneous-Sources-of-Data.pdf
https://sites.gatech.edu/jianjun-shi/files/2021/01/Multiple-Tensor-on-Tensor-Regression-An-Approach-for-Modeling-Processes-With-Heterogeneous-Sources-of-Data.pdf
https://sites.gatech.edu/jianjun-shi/files/2021/01/Multiple-Tensor-on-Tensor-Regression-An-Approach-for-Modeling-Processes-With-Heterogeneous-Sources-of-Data.pdf

Tensor-on-Tensor regression with Interaction effects Models with Application to a Hot Rolling Process
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25 3D scatter plot among
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3D scatter plot among
rod area of stand 3, temp
of stand 5 and quality y,

Speed of S8 0508 Eff Dia of $2 Temperature of S5 3 Rod Area of $3
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(0.0397) | (5.14e-05) | (6.28e-05) (1.15€-04) (3.28e-05)
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Image-Based Feedback Control Using Tensor Analysis

Zhong, Z., Paynabar, K., Shi, J., (2023). “Image Based Feedback Control using Tensor 20
Analysis.” Technometrics, DOI: 10.1080/00401706.2022.2157880
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Motivation for Image-based Control

e The product quality measures are sequential images or videos.
 Adjustment of process control variables will impact product quality.

Stage position L, Stage position L, Cutting Depth D;, Cutting Depth D,
lens height 7,... lens height #,... 1 Speedy, Speed v,

Machining process

| ¥

-100 0 100 n-s e I s w0 %

A set of control v'ariables = i A set of control variables =
Minimize overlay output ! Minimize the deviations from nominal 21



Objective and Challenges

Objective:
Develop an optimal control framework for streaming image outputs by
adjusting the input variables.

Challenges

@ High-dimensionality: How to avoid overfitting?
@ Spatial and temporal correlation structure: How to exploit?

© Non-i.i.d Noise: How to model?

Methodology:
Eﬁ-based time series modeling and control

22



Overview of Image-based Control
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Case Study: The photolithography process

Reticle

Reticle
stage

Projection
lens

Wafer

Wafer
stage

150

Light source

W/

A e

e ——

‘\*

without control overlay map

Overlay vector: The alignment error between (i)

The projected pattern. (ii) The desired projected

location on the wafer.

* Arrows indicate
the direction of
movement.

!

"

150

100

50

-50

-100

-150

.................
.........

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

\\\\\\\\\
\\\\\\\\\\\\\\\\\\
‘‘‘‘‘‘‘‘‘‘‘‘‘

\\\\\\\\\\\\\\

-200
-300

-200 -100 0 100

- -200
200 300

with control overlay map

100

50

-50

-100

-150

-300 -200 -100 0 100 200

024




In-situ Product Quality Prediction based on
3D Point Cloud Data

Biehler, M., Yan, H., &Shi, J. (2022) “ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for
Unstructured, Varying-Size Point Cloud Data,” in IEEE Transactions on Automation Science and Engineei23g,
doi: 10.1109/TASE.2022.3230563.
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Motivating Example — Medical Engineering

Intermediate dimension quality

Current Practice check

Assembl

Warehouse

Manufacturuin Inline —— MV Data
Metrology

Final quality

> ][l check
Noise, Vibration, Harshness

(NVH)

Manufacturing Deviations

Output

Unstructured, varying-size 3D point cloud data Scalar response

Transmission Error (TE)

4 Total
A0 10 Transmission
g o - Error,

o 5 10
Time [s]

In situ MV-based Quality Prediction

[ Objective: Model a scalar response as a function of an unstructured, varying-size 3D point cloud J




ANTLER Methodology — An Overview
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» Leverage performance of SNBTD on small sample sizes
« Simultaneously optimize regression and low dimensional representatiog7

Biehler, M., Yan, H., &Shi, J. (2022) “ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for Unstructured, Varying-Size
Point Cloud Data,” in IEEE Transactions on Automation Science and Engineering, doi: 10.1109/TASE.2022.3230563.
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ANTLER - Industry Implementation and Impact

Final quality

v/‘ check
Intermediate quality check J

And rejection decision y ‘V /

; Inli ANTLE Reject
Manufacturuing Me?rcl;I‘ggy ] R -’— Dec{sion

Warehouse

VA s 71 B N

2 | e

-© Based on ANTLER predictio

ek
e WY

Transmission Error

LXe]
38
o3e]

Ca. 380.000
parts / year

* Introduced intermediate quality check based on ANTLER
prediction results:
— Decision rule:
* Accept if predicted transmission error < Engineering Tolerance

» Since implementation (February 2022):
* Reduction of total scrap cost by 61%

Biehler, M., Yan, H., &Shi, J. (2022) “ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for
Unstructured, Varying-Size Point Cloud Data,” in IEEE Transactions on Automation Science and Engineeﬁﬁg,
doi: 10.1109/TASE.2022.3230563.
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DETONATE: Nonlinear Dynamic Evolution
modeling of Time-dependent 3-dimensional
point cloud profiles

Biehler,M., Lin, D. & Shi, J. (2023) DETONATE: Nonlinear Dynamic Evolution Modeling of Time-dependggt 3-
dimensional Point Cloud Profiles, IISE Transactions, (accepted, in
press) DOI: 10.1080/24725854.2023.2207615
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DETONATE: Nonlinear Dynamic Evolution modeling of Time-
dependent 3-dimensional point cloud profiles

Motivation: dynamically evolving 3D shapes are common

Landslide 3D Printing Detonation
Process Wind & Chemical 1
Sensors m =  Reactibn , x

‘r: “ X
+ 4
¥y
X

X X
” ’
Y ox i xyXx X
t=3 X

X Unstructured Measurement Points

Objective: Modeling of dynamically evolving 3D shapes according to temporal 0
propagation and heterogenous inputs



Landslide 3D Printing Detonation

Process Sensors Wind & Chemical Reaction i
= X

Weather

Er""]

Common Data Characteristics:

 Dynamically, nonlinear, temporally evolving 3D shape profiles

« 3D shapes are represented by unstructured 3D point clouds

« 3D shape profiles are spatially affected by heterogeneous input data
« Backward predictions are also relevant: Root Cause Analysis

Challenges

Evolving 3D shapes exhibit complex spatio-temporal structure: How to model?
Forward and backward predictions: How to exploit and combine?
Unstructured data structure of 3D point clouds: How to process?

0 Dnp -

Heterogenous input data: How to fuse with temporal model?

31



Proposed DETONATE Methodology

 Problem setup using Koopman Operator Theory
e Latent Encoding via 3D Autoencoder
 Forward and Backward Dynamics
e Consistent Dynamics
 Heterogenous Input Data Sources
e Unified DETONATE framework
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M. Biehler, D. Lin, and J. Shi (2023) “DETONATE: Nonlinear Dynamic Evolution Modeling of Time-dependent 3-

dimensional Point Cloud Profiles”, IISE Transactions (accepted), http://dx.doi.org/10.13140/
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Unified DETONATE Framework

o Goal: 2 =

* Unified DETONATE Loss:

(X2 )
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Case Study — 3D Printing Experiments

Filament
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Case Study — 3D Printing - Results

 Temporally evolving 3D point cloud profiles:
— Up- or down-sampled to a fixed-point number of N = 60,000

— If more precision is required: Our ANTLER work on varying-size, unstructured point
clouds can be adapted

* Prediction Results
a) DETONATE (Ours) b) Graph-RNN (Benchmark)

Layer 10 Layer 20 Layer 10 Layer 20

M. Biehler, D. Lin, and J. Shi (2023) “DETONATE: Nonlinear Dynamic Evolution Modeling of Time-dependent 3-dimensional Point
Cloud Profiles”, IISE Transactions (accepted). http://dx.doi.org/10.13140/RG.2.2.28631.34720/1 35
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DETONATE Model-based Dimensional Compensation Control
- Concepts

e DETONATE enables next generation of In-Process Quality
Improvement (IPQI) methodologies

Compensation and Control: Concept
— Adjust process variables to achieve desired 3D shape

Dimensional
ompensatlon Control

Multistage
Manufacturing Process

i ] i
l' I'
- B

Predicted shape (DETONATE):
Distorted due to process variation

Desired Shape

Adjust
control
variables
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DETONATE Model-based Dimensional Compensation Control
- Concepts and Experimental Results

P .
‘ ' Control actions
Target y
Target Z, _ u
,| Control using Re_al_3D
DETONATE Printing

System

Closed loop Control
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Summary

Machine Vision has been widely used in smart manufacturing
to measure product quality and process/machine conditions,
which enables the IPQI.

Machine Learning and Data fusion are key components of
R&D, which requires multidisciplinary efforts from
engineering, statistics, machine learning, and control.

Machine Vision enabled IPQI has been generated significant
economic impacts in numerous manufacturing systems, and
much more work needs to be done in this important area.

Close collaborations between industry and academia are
essential to move forward of machine vision enabled IPQI.
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Thank you!
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